# キラル二核バナジウム触媒を用いた不斉酸化反応

Asymmetric oxidation catalyzed by chiral dinuclear vanadium catalysts

# 桐原正之\*、鈴木通恭\*、後藤匠\*、石塚勇貴\*、滝澤忍\*\* Masayuki KIRIHARA, Michitaka SUZUKI, Takumi GOTO, Yuki ISHIZUKA, and Shinobu TAKIZAWA

Abstrac: The kinetic resolutions of racemic  $\alpha$ -hydroxycarbonyls with chiral dinuclear vanadium complexes under O<sub>2</sub> atmosphere were examined. Although the reaction rates were low, chiral  $\alpha$ -hydroxycarbonyls were obtained in up to 37% ee. The chiral dinuclear vanadium complexes were also found to promote the asymmetric oxidation of a sulfide using hydrogen peroxide as a co-oxidant, producing the corresponding sulfoxide in good chemical yields.

### 1. はじめに

我々は、遷移金属触媒を用いた有機化合物の環境調和型 酸化反応の研究を行っており、バナジウム触媒と分子状酸 素を用いたα-ヒドロキシカルボニルの酸化反応<sup>1)</sup>、α-ヒ ドロキシカルボニルの酸化的開裂反応<sup>2)</sup>、三級α-ジオー ルの酸化的開裂反応<sup>3)</sup>、モノチオアセタールの脱保護反応 <sup>4)</sup>、チオールのジスルフィドへの酸化反応<sup>5)</sup>などを見出し ている。またタンタル触媒やニオブ触媒と過酸化水素を用 いた、スルフィドの高選択的酸化反応<sup>6)</sup>や脱ジチオアセ タール化反応も見出している<sup>7)</sup>。さらに、二核バナジウム 触媒と分子状酸素を用いたβ-ナフトール類の不斉カップ リングによる、機能性キラルビナフトールの合成に成功し ている<sup>8)</sup>。

そこで今回は、二核バナジウム触媒を用いた不斉酸化反応を、ラセミ体の α-ヒドロキシカルボニルに適用し、一方のエナンチオマーのみを選択的にカルボニルへと酸化できれば、速度論的分割によってキラルアルコールに変換できる考え、検討を行った。また二核バナジウム触媒を用いた不斉酸化反応を、スルフィド酸化反応に適用すれば、キラルスルホキシドが得られると考え検討した。

2. キラルバナジウム錯体による α-ヒドロキシカルボニ ルの不斉酸素酸化

α-ヒドロキシケトンとして (±)-ベンゾインを、α-ヒ ドロキシエステルとして(±)-マンデル酸エチルを選択し (図 1)、ジクロロメタン中、酸素雰囲気下で、各種キラル バナジウム触媒(図 2, 1~5)1 mol%を用いた不斉酸化を 検討した。原則として、反応が 50%程度進行した時点で反 応を停止させ、未反応のアルコール体を単離した後、比旋 光度を測定してエナンチオ過剰率(% ce)を算出した。

2013年3月1日受理

\* 理工学部 物質生命科学科

\*\* 大阪大学 産業科学研究所



ベンゾインAを基質とした場合(表 1)、いずれの場合も 反応速度は遅く(50%程度反応するのに 112~236 時間必 要)、未反応のベンゾインBの光学純度もあまり高くなか ったものの、不斉酸化が進行することを見出した。なお、 オキシ三塩化バナジウム(VOCl<sub>3</sub>)を用いた場合は20時 間程度でベンゾインは全て酸化されることを確認している<sup>2</sup>。

|    | CH<br>Ph (1<br>CH | atalyst<br>mol%)<br>H <sub>2</sub> Cl <sub>2</sub> , O <sub>2</sub> |              | . <sup>Ph</sup> + F |      |
|----|-------------------|---------------------------------------------------------------------|--------------|---------------------|------|
| A  |                   |                                                                     | В            |                     | C    |
| 触媒 | Time              | %ee                                                                 | <b>B</b> (%) | <b>C</b> (%)        | 絶対配置 |
| 1  | 236h              | 13                                                                  | 53           | 47                  | S    |
| 2  | 112h              | 7                                                                   | 57           | 43                  | R    |
| 3  | 165h              | 13                                                                  | 50           | 50                  | S    |
| 4  | 119h              | 3                                                                   | 51           | 49                  | R    |
| 5  | 214h              | 4                                                                   | 44           | 56                  | S    |

# 表1 ペンゾインの不斉酸素酸化

マンデル酸エチルを基質に用いた場合は、ベンゾインの 場合よりもさらに反応速度が遅かったものの、触媒2を用 いた場合には、27% ee で目的のBが得られた(表2)。

表2 マンデル酸エチルの不斉酸素酸化

| $Ph \underbrace{\bigcup_{i=1}^{OH} OEt \underbrace{(1 \text{ mol}\%)}_{CH_2Cl_2, O_2}}_{CH_2Cl_2, O_2} Ph \underbrace{\bigcup_{i=1}^{OH} OEt}_{O} + Ph \underbrace{\bigcup_{i=1}^{OH} OEt}_{OH} + Ph \bigcup_{i$ |            |     |       |              |      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-------|--------------|------|--|--|--|
| Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |     | в     |              | С    |  |  |  |
| 触媒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time       | %ee | B (%) | <b>C</b> (%) | 絶対配置 |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1189h45min | 3   | 47    | 53           | R    |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1886h45min | 27  | 21    | 79           | R    |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1586h35min | 2   | 96    | 4            | R    |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 991h       | 6   | 43    | 57           | R    |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 887h50min  | 4   | 51    | 49           | S    |  |  |  |

VOCl<sub>3</sub>を用いたα-ヒドロキシカルボニルの酸素酸化の 場合、溶媒としてジクロロメタンの代わりにアセトニトリ ルのような極性溶媒を用いると、反応速度が大幅に向上し、 目的のα-ジカルボニル化合物の収率が向上することがわ かっている<sup>2</sup>。そこでアセトニトリル中で触媒5を用いて、 マンデル酸エチルを反応基質に検討をおこなった。その結 果、期待通り反応速度が速くなり、光学純度も37% ee ま で向上した(図3)。





マンデル酸エチルの場合に最も光学収率が高かった触 媒2を用いて、アセトニトリル中での反応を行った。しか しながら、反応時間は短くなったものの、光学純度は大幅 に低下した(図4)。



α-ヒドロキシカルボニルの不斉酸化において速度論的 光学分割を行うことができた。しかしいずれの場合も反応 速度が遅く、また目的物の光学純度も不十分であった。今 後はまずキラルバナジウム触媒の酸化活性を向上させる ため、バナジウム原子に電子求引基を有する新規錯体を調 製して、反応を検討していきたいと考えている。

3. キラルバナジウム錯体によるスルフィドの不斉酸化

スルフィドとしてチオアニソールを選択し、キラルバナ ジウム触媒3を用いて、酸素雰囲気下、室温で各種溶媒中 (ジクロロメタン、アセトニトリル、酢酸エチル)での反 応を検討した。しかしながら、酸素雰囲気下では、反応は 全く進行せず、原料回収に終わった(図5)。

Ph S Me <u>3 (1 mol%)</u> No Reaction solvent: CH<sub>2</sub>Cl<sub>2</sub>, CH<sub>3</sub>CN,or AcOEt 図5 チオアニソールの不斉酸素酸化検討

VOCl<sub>3</sub>を触媒として用いて、チオアニソールと酸素雰囲 気下で攪拌しても、酸化反応は全く進行しないことから<sup>9</sup>、 共酸化剤として過酸化水素を用いることにした。

チオアニソールに、1 mol%のキラルバナジウム触媒 3 存在下、各種有機溶媒中(ジクロロメタン、アセトニトリ ル、酢酸エチル)で、5 当量の 30%過酸化水素との反応を 検討した。

本反応は極めて速く、過剰酸化が確認され、スルホンF が副生成物として得られた。不斉スルホキシド体は得られ たものの、光学純度は低い結果となった(表 3)。

今後は、様々なキラルバナジウム触媒を用いて検討を行 うとともに、スルホンへの過剰酸化を抑え、かつ光学収率 の向上を目指して、より低温下で反応を行う予定である。

| ۶.                              | 3 (1 mol%)                |                         |        | Ă           |                      |
|---------------------------------|---------------------------|-------------------------|--------|-------------|----------------------|
| Ph Me<br>D                      | 30%H <sub>2</sub><br>solv | 2 <b>0</b> 2 (5<br>/ent | eq.) p | °h∕∗ M<br>E | ₽ S´<br>Ph S´Me<br>F |
| solvent                         | Time                      | %ee                     | E (%)  | F (%)       | 絶対配置                 |
| CH <sub>2</sub> Cl <sub>2</sub> | 10min                     | 6                       | 47     | 51          | R                    |
| CH₃CN                           | 10min                     | 1                       | 53     | 33          | R                    |
| EtOAc                           | 10min                     | 8                       | 84     | 13          | R                    |

O

#### 表3 チオアニソールの不斉過酸化水素酸化

## 4. 結論

キラル二核バナジウム触媒を用いた酸素酸化を用いれ ば、ラセミ体のα-ヒドロキシカルボニルの速度論的分割 ができ、キラルアルコールへと変換できることがわかった。

また、キラル二核バナジウム触媒を用いたスルフィドの 過酸化水素酸化により、キラルスルホキシドが合成できる ことを見出すことができた。

これらの反応のエナンチオ選択性は、まだ満足のいくも のではないので、さらに選択性向上を目指して検討する必 要がある。

## 5. 実験の部

赤外吸収スペクトル (IR)は JASCO FT/IR-8300 型を用い て測定した。水素核磁気共鳴スペクトル (<sup>1</sup>H-NMR) は、 JEOL JNM-EX400 核磁気共鳴装置を用い、内部標準物質 として、テトラメチルシラン (TMS) を用いて測定した。 質量スペクトル (MS) および、ガスクロマトグラフィー-質量スペクトル (GC-MS) は、島津 GCMS-QP1100EX 質 量分析装置を用いて測定した。旋光度は、日本分光 DIP-370 旋光計を用いて測定した。シリカゲルカラムクロマトグラ フィーは、関東化学 Silica Gel 60N (spherical, neutral)を用 いて行った。薄層クロマトグラフィー (TLC) 分析は、メ ルク㈱ TLC アルミニウムシート 20 x 20 cm シリカゲル 60 F254 を用いて行った。

# キラルバナジウム錯体による α-ヒドロキシカルボニル の不斉酸素酸化

酸素雰囲気下、α・ヒドロキシカルボニル(0.25 mmol) をジクロロメタン(またはアセトニトリル)(5 ml)に溶 かし、キラルバナジウム錯体(0.025 mmol)を加え、室 温で攪拌した。反応液をGC-MSで分析し、反応が50%進 行した時点で、ロータリーエバポレーターを用いて溶媒を 留去した。得られた粗生成物をシリカゲルカラムクロマト グラフィー (n・ヘキサン:酢酸エチルを展開溶媒) により 精製し、ジカルボニル体とα・ヒドロキシカルボニル体を 得た。α・ヒドロキシカルボニル体の比旋光度を測定し、 光学純度を算出した。ジカルボニル体とα・ヒドロキシカ ルボニル体の構造は、IR, NMR, MSの各種スペクトルデ ータが、標品のものと一致したことにより、確認した。

## キラルバナジウム錯体によるチオアニソールの不斉過酸 化水素酸化

チオアニソール(62.1 mg, 0.5 mmol)を溶媒(4 ml)に 溶かし、これにキラルバナジウム錯体(0.05 mmol)と 30%過酸化水素水(0.20 ml, 2.5 mmol)を加え、室温で 攪拌した。反応液を TLC で分析し、チオアニソールのス ポットが消失した時点で、飽和チオ硫酸ナトリウム水溶液 を加え、ジクロロメタンで抽出した。抽出液を無水硫酸マ グネシウムで乾燥させた後、ロータリーエバポレーターを 用いて溶媒を留去した。得られた粗生成物をシリカゲルカ ラムクロマトグラフィー(n・ヘキサン:酢酸エチルを展開 溶媒)により精製し、フェニルメチルスルホキシドとフェ ニルメチルスルホンを得た。フェニルメチルスルホキシド の比旋光度を測定し、光学純度を算出した。フェニルメチ ルスルホキシドとフェニルメチルスルホンの構造は、IR, NMR, MS の各種スペクトルデータが、標品のものと一致 したことにより、確認した。

### 謝辞

本研究の一部は, 平成 22 年度物質・デバイス領域共同 研究課題(20100134)の研究費によって支援された。

#### 参考文献

- M. Kirihara, Y. Ochiai, S. Takizawa, H. Takahata, H. Nemoto, *Chem. Commun.* 1999, 1387.
- M. Kirihara, S. Takizawa, T. Momose, J. Chem. Soc., Perkin Trans. 1 1998, 7.
- M. Kirihara, K. Yoshida, T. Noguchi, S. Naito, N. Matsumoto, Y. Ema, M. Torii, Y. Ishizuka, I. Souta, *Tetrahedron Lett.* 2010, 51, 3619.
- M. Kirihara, Y. Ochiai, N. Arai, S. Takizawa, T. Momose, H. Nemoto, *Tetrahedron Lett.*, **1999**, 40, 9055.
- M. Kirihara, K. Okubo, T. Uchiyama, Y. Kato, Y. Ochiai, S. Matushita, A. Hatano, K. Kanamori, *Chem. Pharm. Bull.* 2004, *52*, 625.
- 6) M. Kirihara, A. Itou, T. Noguchi, J. Yamamoto, Synlett

2010, 1557; M. Kirihara, J. Yamamoto, T. Noguchi, A. Itou, S. Naito, Y. Hirai, *Tetrahedron* 2009, *65*, 10477; M. Kirihara, J. Yamamoto, T. Noguchi, Y. Hirai, *Tetrahedron Lett.* 2009, *50*, 1180.

- M. Kirihara, A. Harano, H. Tsukiji, R. Takizawa, T. Uchiyama, A. Hatano, *Tetrahedron Lett.* 2005, 46, 6377.
- H. Somei, Y. Asano, T. Yoshida, S. Takizawa, H. Yamataka, H. Sasai, *Tetrahedron Lett.* 2004, 45, 1841; S. Takizawa, T. Katayama, C. Kameyama, K. Onitsuka, T. Suzuki, T. Yanagida, T. Kawai, H. Sasai, *Chem. Commun.* 2008, 1810; S. Takizawa, T. Katayama, H. Somei, Y. Asano, T. Yoshida, C. Kameyama, D. Rajesh, K. Onitsuka, T. Suzuki, M. Mikami, H. Yamataka, D. Jayaprakash, H. Sasai, *Tetrahedron* 2008, 64, 3361; S. Takizawa, T. Katayama, H. Sasai, *Chem. Commun.* 2008, 4113; S. Takizawa, *Chem. Pharm. Bull.* 2009, 57, 1179.
- 9) M. Kirihara, unpublished results.