高占積率を実現するモータコイルの提案

Proposal of motor coil realizing high space factor

飯田 基博*, 服部 知美** Motohiro IIDA and Satomi HATTORI

This paper describes a motor coil with a high space factor, which is an improved edgewise coil. The shape of the coil is made trapezoidal by increasing the line width of the edgewise coil in the outer diameter direction. Thereby, the gap between the coils is reduced, and the space factor can be improved. If the space factor is improved, the efficiency of the motor can be increased and the size of the motor can be reduced.

1. はじめに

現在,地球温暖化が社会問題化しており,温室効果ガ スの削減や省エネルギー化が推進されている.その上, 日本におけるモータの消費電力は,総消費電力の約 60%を占めているため,更なるモータの高効率化が求め られている.また,自動車においては,車載スペースの 制約から小型化が求められている⁽¹⁾.

モータは、スロットに占めるコイルの断面積(以降, 占積率)を増加させることで、効率の向上や小型化が可 能となる.占積率を向上させる取り組みとして、コイル を分割した鉄心に巻線し組み立てるもの⁽²⁾、コイルを従 来の丸線から角線に変更するもの⁽³⁾、平角線を使用する もの⁽⁴⁾などが挙げられる.

角線を使用する方法では、巻線間の隙間が減り、占積 率が向上するが、巻き方は従来の丸線と同じである.こ れにより、巻線間の隙間や径方向の放熱がエナメル線 や線間の隙間を通して行われることなどに問題が残さ れている.

また,集中巻モータは,分布巻モータと比べて,コイ ルエンドが短く,その分,小型化や銅損の低減が可能と なる.さらに,集中巻モータは,巻線を1つのティース に集中して巻くため,占積率を高くすることができる.

これらのことから、モータの小型・高効率化は、高占 積率な集中巻コイルを採用することで実現できると考 えられる.

平角線を使用した集中巻コイルに,エッジワイズコ イルがある.エッジワイズコイルは,平角線の短辺を内

2022年3月22日受理

** 理工学部 電気電子工学科

径側にして曲がりにくい方向に巻くコイルである.平 角線を使用することで、巻線間の隙間が小さくなり、占 積率が向上する.また、コイルの径方向の放熱は、絶縁 被膜や線間の隙間がなく、銅の熱伝導のみであるため 放熱性がよい⁽⁴⁾.

しかし、一定の幅の巻線を使用しており、コイルの断 面が矩形になることで、モータの外径方向に行くほど、 コイル間の隙間が大きくなり、占積率が低下する.

本研究では,集中巻コイルの高占積率化を目的とし て,平角線を使用した,形状を台形にしたコイルを提案 する.その有効性を確認するためにモータを試作し,実 機実験によりその特性を測定する.

2. 台形状にしたエッジワイズコイル

2.1 エッジワイズコイル

前述したように、エッジワイズコイルは、平角線の 短辺を内径側にして曲がりにくい方向に巻くコイルで あり、占積率の向上や放熱性がよいという特徴を持っ ている.エッジワイズコイルの構造を Fig.1 に示す.し かし、モータの外径方向に行くほど、コイル間の隙間が 大きくなり、占積率の低下を招くというデメリットも ある.また、平角線を巻きづらい方向に曲げるため、コ イルの巻き太りや曲げた部分の絶縁が剥がれやすくな る.エッジワイズコイルを電機子鉄心に組み込んだも のを Fig.2 に示す.ここで、エッジワイズコイルを組み 込んだモータを比較機とする.また、モータは、トヨタ 車体製小型電気自動車 COMS (インホイールモータタ イプ)の永久磁石型同期モータを使用した.

2.2 試作コイル

エッジワイズコイルの欠点である,外径方向に行くに つれてコイル間の隙間が増加することは,電機子巻線の

^{*} システム工学専攻 修了

Fig. 1 Edgewise coil

Fig. 2 Motor stator with edgewise coil

幅を外径方向に行くにつれて段階的に広げていき,コイ ル形状を台形状にすることで改善できる. 台形状にした エッジワイズコイルの構造を Fig. 3 に,それを電機子鉄 心に組み込んだものを Fig. 4 に示す.

このように、コイル形状を台形状にすることで、占積率 を向上させることができる. 巻線の断面積を増加させ占 積率を向上させた場合、巻線抵抗が小さくなり、銅損が減 少し、モータ効率が向上することが予想される. さらに、 銅損の低減により、コイルの温度上昇を抑えることが可 能となる. コイルの温度上昇の低減は、機器の冷却機構の 簡素化や容量の増加、絶縁物の耐熱クラスを下げること などにつながる. また、巻線断面積を統一して占積率を向 上させた場合、スロットが小さくなるため、モータの小型 化が実現できると考えられる. 加えてコイル形状を台形 状にしたコイルは、巻線を巻くのではなく、コの字型の銅 板を圧着してコイルを成形している. そのため、エッジワ イズコイルにあった巻き太りや絶縁が剥がれやすくなる という欠点も改善される.

本研究では、巻線の断面積を増加させ占積率を向上さ せることを目的として、コイル形状を台形状にしたエッ ジワイズコイルを試作した(以降,試作コイル).ここで、 試作コイルを組み込んだモータを試作機とする.

2.3 占積率の計算

理想的なエッジワイズコイルおよび試作コイルの占積 率を求める.電機子鉄心は,実機実験で使用する COMS のモータとし,スロットの断面積は,実測値を使用する. COMS のモータのスロットを Fig. 5 に示す.ここで,赤 線の部分は直線近似して計算する.モータのスロットに, 理想的なエッジワイズコイルと試作コイルを組み込んだ

Fig. 4 Motor stator with trapezoid coil

図を Fig.6 に示す.ボビンはなく,試作機においては,コ イル間の隙間はないものとして計算する.また,エッジワ イズコイルの巻き太りについても考慮していない. 占積 率の計算結果を Table 1 に示す.

Fig. 5 Slot of COMS's motor

Fig. 6 Cross section of coil and Slot

Table 1 Slot fill factor

	Slot	Test coil	Edgewise coil
Cross section [mm ²]	303.1	270.9	244.5
Slot fill factor [%]	_	89.38	80.67

Table 1 より, 試作コイルの占積率は, エッジワイズコ イルに対して約 9%向上することがわかる. ここからさら に,実際のエッジワイズコイルには巻き太りがあるため, 実機では占積率の差がより大きくなると考えられる.

3. 実機による検証

3.1 試作機の諸元

Table 2 に試作機と比較機の諸元を示す.また,それぞ れの固定子の外観を Fig. 7 に示す.使用した COMS のモ ータには遊星歯車が付いている.しかし,測定装置の測定 可能なトルクを大幅に超えること,ギヤの効率が機械損 として現れるためモータの効率が正確に測定できないこ とから遊星歯車を外し,その代わりとなる治具を取り付 けた.

3.2 性能評価試験装置の構成

試作機の性能評価装置として、テクニカルサポート社 製のモータベンチシステムを使用した.また、モータベン チシステムの構成内容を Table 3 に、内部構成を Fig. 8 に 示す. Fig. 9 にモータベンチシステムのベンチ部を示す. 供試モータ、負荷モータ共にベクトル制御を行っており、 供試モータは電流制御、負荷モータは回転数制御を行っ ている.また、負荷モータは誘導機である.

今回使用したモータは、磁極位置センサにホールセン サを使用しているため、回転角度はホールセンサの信号 から推定した値を使用している.

3.3 損失

(1) 巻線抵抗の算出方法

モータ駆動中,損失によりモータが発熱する.その温度 に対して巻線抵抗値が変化するため巻線抵抗値を補正す る必要がある.巻線抵抗値の補正係数は,モータをある温 度になるまで駆動させた後,モータを自然冷却させなが ら巻線抵抗とコイルの温度の関係を数点測定し,算出す る.コイルの温度は,熱電対をコイルの絶縁皮膜上から貼 り測定する.この温度をコイル表面温度とする.ここで, コイル内部の温度やコイル本来の発熱を調べたい場合, コイルの絶縁皮膜上に熱電対を貼っただけでは測定する ことができない.その理由として以下の2つのことが挙 げられる.

- (a) 熱電対をコイルの絶縁皮膜上から貼っているため, コイル本来の温度を直接測定できていないこと.
- (b) 熱電対をコイルの絶縁皮膜上から貼っているため, 鉄損による発熱の影響を免れないこと.

これらの解決策として,外部温度一定時におけるコイ ル内部の温度は,コイル表面温度とほぼ同じことから,コ イル表面温度をコイル内部の温度に補正する式を導出す る.コイル表面温度と巻線抵抗,コイル内部温度と巻線抵 抗の関係の式を(1)式,(2)式に示す.

	Test motor	Conventional motor	
Pole pairs	6	6	
Slot number	18	18	
Winding turns	38	38	
$R_a [\mathrm{m}\Omega]$	6.66	9.42	
K _E [Vs/rad]	0.0152	0.0154	

(a) Test motor

 $R_i = C t_i + D[\Omega]$

Fig. 7 Photograph of the stator

 Table 3
 Motor bench system configuration

Torque	Max torque: ±20 Nm		
meter	Max speed: 10000 min ⁻¹		
	Capacity: 11 kW		
Load (IM)	Max speed: 10000 min ⁻¹		
	Rated torque: 10 Nm		
Inverter	Power-supply voltage: DC40~400 V		
	Rated capacity: 22 kW		
	PWM frequency: 20 kHz		
	Dead time: min3 µs		
	Power-supply voltage: 3 \u03c6 AC200 V		
Power	I / O capacity: 20 kW		
supply	Output voltage: 0~400 V		
	Output current: ±100 A		

$R_s = A t_s + B[\Omega]$	(1	1)

(2)

ここで, *t_s*: コイル表面温度[℃], *t_i*: コイル内部温度 [℃], *R_s*: コイル表面温度に対する抵抗値, *R_i*: コイル内部 温度に対する抵抗値, *A*, *B*, *C*, *D*: それぞれの式の係数で ある.

抵抗値は直接測定しているため、 $R_s = R_i$ の関係が成り 立つ.この式を整理すると、コイル内部温度は、

$$t_i = \frac{1}{C} (At_s + B - D) [^{\circ}C]$$

$$\geq t_s \mathfrak{Z}.$$
(3)

Fig. 8 Motor bench system

(2) 機械損

永久磁石型同期モータの鉄損と機械損は分離して測定 できないため,機械損P_mは(5)式の経験式⁽⁵⁾に基づいて算 出する.

$$P_m = 8D(l+150)v_a^2 \times 10^{-6} \, [W] \tag{4}$$

ここで, *D*:回転子の外径[mm], *l*:積層鉄心の見かけの長さ[mm], *v_a*:回転子表面の周辺速度[m/s]である.

実験機の *D* と*l* は, それぞれ 148mm, 43.7mm である. また,実験機は自己通風ファンを持たないため,機 械損は(4)式の1/2とする.

4. 実験結果

4.1 占積率

2.3 節で述べたスロット断面積を使用して求めた試作 コイル,エッジワイズコイルの占積率の実測値を Table 4 に示す. Table 4 より,試作コイルの占積率は,理論値と 比べて約 7%程度減少していることが分かる.これは,実 機製作に伴う,鉄心のティースとコイルおよびコイル間 に隙間ができたことによるものであると考えられる.一 方,エッジワイズコイルは,理論値と比べて約 28%と大 きく減少していることが分かる.これは,実機製作に伴 う,コイル間の隙間ができたことと,コイルの巻き太りに より,鉄心のティースとコイルの間にも隙間ができたこ とによるものであると考えられる.

試作コイルは理論値と実機の占積率に大きな差はない が,エッジワイズコイルは理論値と実機に大きな差があ る.このことから,試作コイルはエッジワイズコイルに比 べて,設計通りに製作しやすいコイルであることが分か る.

4.2 卷線抵抗

3.3節で述べた方法により,試作コイル,エッジワイズ コイルの巻線の温度に対する抵抗値はそれぞれ(5)式,(6) 式のようになる.

 $R_{s \ test} = 0.0313t_{s \ test} + 9.1705[\text{m}\Omega] \tag{5}$

$$R_{s_edge} = 0.0473 t_{s_edge} + 11.646 [m\Omega]$$
(6)

ここで, t_{s_test} : 試作コイル表面温度[°C], t_{s_edge} : エッジ ワイズコイル表面温度[°C], R_{s_test} : コイル表面温度に対す る試作コイルの抵抗値, R_{s_edge} : コイル表面温度に対する エッジワイズコイルの抵抗値である.

また,コイル内部の温度と抵抗値の関係は,それぞれ (7)式,(8)式のようになる.

 $R_{i_test} = 0.0378t_{i_test} + 8.8824[\text{m}\Omega]$ (7)

$$R_{i_edge} = 0.0531t_{i_edge} + 11.668[\text{m}\Omega]$$
(8)

ここで、 t_{i_test} : 試作コイル内部温度[°C]、 t_{i_edge} : エッジ ワイズコイル内部温度[°C], R_{i_test} : コイル内部温度に対す る試作コイルの抵抗値、 R_{i_edge} : コイル内部温度に対する エッジワイズコイルの抵抗値である.

さらに、それぞれのコイルの絶縁被膜の温度とコイル 内部の温度の関係は(3)式より、

$$t_{i \ test} = (0.828t_{s \ test} + 7.622)[^{\circ}C]$$
(9)

$$t_{i_edge} = (0.891t_{s_edge} - 0.4143)[^{\circ}C]$$
(10)

となる.

Fig. 9 Motor bench

Table 4 Slot fill factor (Measured)

	Slot	Test coil	Edgewise coil
Cross section [mm ²]	303.1	249.6	160.7
Slot fill factor [%]	_	82.35	53.02

4.3 モータ効率

試作機および比較機のモータ効率マップを測定した. 動作領域は,弱め界磁制御をしない領域とし,最大 q 軸 電流は 80A とした.また,回転数は 100min⁻¹刻みで変え ていき,それぞれの回転数において,電流を 10A から 80A まで 1A 刻みで増加させ,そのときのモータ効率や損失な どを測定した.なお,モータ効率には機械損が含まれてい る.

Fig. 10, Fig. 11 に試作機と比較機のモータ効率マップ をそれぞれ示す. Fig. 10, Fig. 11 より,試作機の方が,低 速度領域の効率が高くなっていることがわかる.低速度 領域は銅損が支配的であり,試作コイルの占積率の向上 により銅損が小さくなったため,モータ効率が高くなっ たと考えられる. Fig. 12 に全動作領域に占める 5%ごとの モータ効率の割合を示す.試作機の方が,モータ効率 90% を超える動作点が多いことがわかる.

さらに、モータ効率マップにおける各モータの損失の 比較を行った. Fig. 13 にモータ効率測定時における損失 を示す. Fig. 13 より,試作機の銅損が比較機の75%程度 となっていることがわかる.また,試作機のモータ効率 は、比較機と比べ,500min⁻¹のときは3%程度,3000min⁻¹ のときは1%程度高いことがわかる.低速時の方がモータ 効率の差が大きい理由として,前述のとおり,低速時は銅 損が支配的であり,試作コイルの占積率の向上により銅 損が小さくなったためであると考えられる.

4.4 温度特性

モータを 3000min⁻¹, 8Nm で約2時間駆動し,1分毎に コイル表面温度と損失を測定した. Fig. 14 にコイル表面 温度の変化を示す. さらに, Fig. 15 に (9)式, (10)式を用 いて換算(温度補正)したコイル内部温度, Fig. 16 に損 失のグラフを示す.

Fig. 14 より, 2 時間駆動した時の試作機の温度が,比 較機と比べ 10℃程度低いことがわかる. これは, 試作コ イルの占積率の向上により銅損が小さくなったためであ ると考えられる. また, Fig. 15 より,温度補正をした場 合,温度が減少していることがわかる. これは,鉄損によ る熱やモータ内に籠った熱の影響が取り除かれたためで あると考えられる.

Fig. 10 Efficiency map of test motor

Fig. 11 Efficiency map of conventional motor

Fig. 13 Losses in operating area

Fig. 16 より,比較機に対する試作機の銅損は,測定開 始時は 75.4%,測定終了時は 72.3%となった.このことか ら,巻線抵抗を小さくすることで,温度上昇を抑えること ができ,それによって温度飽和時の銅損をより小さくす ることが可能となることがわかった.

Fig. 15 Temperature of coil (correction)

5. まとめ

エッジワイズコイルを台形状にした高占積率なコイル を提案し,実機実験によりモータ効率の向上,温度上昇の 低減を確認した.

モータ効率の測定では、銅損の低減による、効率の向上 を確認した.また、高速度領域より銅損が支配的である低 速度領域の方が効率が向上することを確認した.温度特 性の測定では、銅損の低減により、温度上昇が抑えられる ことを確認した.また、温度上昇が抑制されることで巻線 抵抗値の上昇も抑えられるため,温度飽和時の銅損をより小さくすることができることを確認した.

本論文では,既存のモータの固定子コイルを提案した コイルに変更して実機実験を行ったため,モータの小型 化という観点では検討していない.しかし,コイルの占積 率が向上しているため,損失をそろえた場合,小型化が可 能であることが予想される.

今後,既存のモータではなく,試作コイルに合わせて設 計し,モータの小型化に関する検証をしていきたい.

参考文献

- S. Makita, E. Takahashi, M. Nashiki, S. Doki: "New Motor Having a Simple Structure with Three-Dimensional Magnetic Circuit and Loop Windings", *IEEJ Transactions* on Industry Applications, Vol.134, No.3, pp.363-369 (2014) (in Japanese) 牧田真治・高橋英介・梨木政行・道木慎二:「三次元 磁路と環状巻線からなる簡素なステータ構造を有す る新しいモータ」, 電学論 D, Vol.134, No.3, pp.363-369 (2014)
- (2) 池田洋一・中原裕治・伊藤浩美・斉藤直文:「新形汎用 AC サーボモータの生産技術」, 三菱電機技報, No.4 (1998)
- (3) T. Ishigami : "Arraying Winding Technology for Continuous Rectangular Wire Concentrated Wound Coils", *IEEJ Transactions on Industry Applications*, Vol.138, No.8, pp.706-712 (2018) (in Japanese) 石上孝:「連続した角線集中巻コイルの整列巻線技 術」, 電学論 D, Vol.138, No.8, pp.706-712 (2018)
- (4) 森本雅之:「入門モーター工学」,森北出版, p.119 (2013)
- (5) 竹内寿太郎・西方正司・足利正・五十嵐和巳・伊東竹 虎・大湊茂夫・山田幸治・水野孝行・渡辺洋一:「大 学課程 電機設計学 改訂 3 版」,オーム社, p.7 (2016)